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Algebraic inequalities with polynomial
Azy + yz + 12) — (% + y* + 2%)

Arkady Alt 7
Part 1. As introduction.
1.1. Symmetric polynomial

Az, y,2) = 2(zy +yz +o2) — (2% 4+ y? + 2%)

is quadratic form, which isn’t positive definite

qg+r gq—r
A<p+q, )=q2—p2—r2

2 * 2
and even claim z,y,z > 0 don’t provide positivity of A (z,y, 2) .But if
a,b, ¢ be sidelengths of a triangle then A (a,b,c) > 0 and in that case
importance of A (a,b,c) has been demonstrated in [1].
In that paper we are going to pay attention only on to the algebraic
inequalities with polynomial A (a,b,c) where a,b,c > 0, mainly to the
inequalities which in certain sense generalize Hadwiger-Finsler Inequality

ABF+(a—b)2+(b—c)’+(c—a)P <a®+b>+

Since

16F% =2 a’b? - > at =A%)

and

ZaQ—Z(a—b)QzA(a,b,c)

(here and everywhere further ) is cyclic sum ») then this inequality in

cyc
A notation, brought before us in the form of inequality
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(H-F)

AR (a,b,c) > 3A (az,b2,62) .

which holds not only for sidelengths a, b, ¢ but also for any real positive
a,b,c as well.

Indeed, assuming a 4+ b+ ¢ = 1 and denoting p := ab + be + ca,q := abe (
(1, p, ¢)—notation) we obtain

Afa,b,c) = 4p — 1,A (a?b%,c?) = 4p — 8¢ — 1 and then inequality (H-F)
becomes

(=12 3(p-8g-1) = ¢> 170D

where latter inequality is Schure’s Inequality a2 (a — b) (a — c) >0 in

cyc

P, g—notation, normalized by > a = 1.
Using notation A, (z,y,2) := A (2P,yP,2P) , p € R4, we can rewrite
inequality (H-F) as

A% (a,b,¢) > 3A4 (a, b, c) = Ao (a,b,¢) - Ag(a,b,c).

It was also proved that in case a,b,c be sidelengths of a triangle holds
inequality

Ai (a,b,¢) - Az (a,b,c) > 3 Ay (a,b,c) 3]

and for any positive real a, b, ¢ holds inequality

A3 (a,b,¢) > A (a,b, c)-As(a,b,c). [4]
It was the strong argument for attempt to prove generalization of such
inequalities
for any positive real a, b, ¢, namely, inequality

Ap(a,b,c)- Ay, (a,b,¢) >3 Apti1(a,b,c)

and even more general inequality

Ap(a,b,c) - Ag(a,b,c) >3 Apiy(a,b,¢),p,qg € Ry (1)

(which in turn is a consequence
of the more general inequality (3) represented by Theorem in Part 2) and
inequality
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A? (a,b,¢) > Ap_1(a,b,c) - Anti(a,b,c) ,n €N (2)

which can be considered as strong generalization of Hadwiger-Finsler
Inequality
and the proof of which is the topic of a separate article.

1.2. As more deep introduction in A we consider two propositions:

Proposition 1. Let a,b,¢ > 0. Then A, (a,b,c) > 0 for any n € N iff
a=b> cor cyclic more two variants.
Proof. Note that

A3 ) =@+y+2)(@+y—2)(@-y+2) (-z+y+2)
and for positive x,y, z we have equivalency
rT+y>=z

A2y 2%) >0 <= { y+tz>7
z+x >y

Due symmetry and homogeneity of Ay, (a,b,c) >0 WLOG we assume that
b > 1.
Then for any even n € N we have

Aoy, (a,b,c) >0 N b*+1>a™
a>b>c=1 a>b>c=1
First we have to make two comments in relation to Ap (a,b,¢).
Suppose that a > b, then
a"= b+ (a-0b)" > V' +n(a—b)b" > +n(a—b)>0"+1

1
for any n > g It is contradict to b™ 4+ 1 > a™ which holds for any
a —

n € N.Thus a = b.
Let now a = b > ¢ then

n n non n on
A(a™,b", ") =2a2b2 +2b2c2 +2c2a2 —a”-b"—-c"=

n n
= 4c2a?2 —Cn23cn>0

Further where this does not lead to confusion, we shall write A, instead
A, (a,b,c).
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Proposition 2. If for real a, b,c,p > 0 holds Ay, (a, b, ¢) < 0 then for
any real ¢ > p holds Ay, (a,b,c) < 0.
Proof. Since

Dop = (a" + 1 + ) (@ + 1P — P) (aP — b + ) (—aP + 1P + o)

and a, b, c > 0 then inequality Ag, < 0 mean that exactly one of three factons
aP +bP — P aP — WP + P, —qP + bP + (P is negative, let it be P + pP — P,
Since a? + bP<cP then

a\4q hy" a\p By2
T AR L S
c c c e
because E,l—) < 1 yields
gL e

<@ <)

Thus, a? + b7 — ¢? < 0 and since that yields ¢? > a9, b9 then

a? =P+ >0,—aP + b + P > 0

and, therefore, Ay, < 0.

Corollary. If A, (a,b,c) > 0 then for any 0 < ¢ < p holds A, (a,b,¢c) > 0.

Part 2. Generalizations of inequalities (1) and (2)
2.1. (related to inequality (1))

Theorem. For any two triples (a,b,¢) and (z,y,2) of nonnegative real
numbers which agreed upon in order ( (a=0b)(z—y) >0 and cyclic

(b—c)(y—2)20,(c-a)(z—2) >0
holds inequality

Afa,b,c) A(z,y,2) > 3A (az, by, cz) (3)
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Proof. Since inequality (3) is invariant with respect to permutations of
((a,z),(b,y),(c,2)) we assume that a > b > ¢,z >y > z. Also, since (3) is
invariant with respect to simultaneous transposition a with z,b with y and ¢
with z we may assume that

(a—b)(y—2)=(x—y) (-0,

because, in the case (a — b) (y — 2) < (= — y) (b — c), by such transposition
we obtain

(z—y)(b—c)<(a—Db)(y—2).

Sincea > b>c, x>y > z we have

(a-b)y—2)2(@-yb-c) < (a-b)x—2)2(z-y)la—c) &

> (a—c)(y—z)z(b—c)(a:—z) & ay+ bz +cx > bx +cy +az.
Indeed,

(@-b)(y—2)—(@—y -0 =@-b-2)-(@-yla-=

:(a—c)(y—z)—(b—c)(a:—z) — ay + bz + cx — (bx + az + cy)
First, we exclude from consideration the cases when at least two of the
variables z,y, z are equal. If z =y =2 then A (z,y,2) = 322 and
A (az, by, cz) = z2A (a,b,c) and we obtain

A(a,b,c) A(z,y,z) = 3A (az, by, cz) .

Thus, remains consider cases T > Y = 2 and z =y > Z.
fg>y=zthen 0= (a—b)(y—2) = (x—y)(b—c)20 = b= c and we
obtain

A(a,b,c) = 4ab — a?, A (z,y,2) =4zy — 22, A (az, by, cz) =
= A (ax, by, by) = 4azby — a’z?

and inequality (3) become
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(4ab — a?) (4zy — z?) > 3 (dazby — a’z?) ==

& (4ab — a2) (4zy — z?) — 3 (4azxby — a’z?) > 0 <= 4azx(z—y)(a—1b) 20

Ifz =y >z then

A (a,b,c) A(z,y,z) — 3A (ax, by, cz) =
= (2ab + 2bc + 2ca — a2 —b? — ) (4zz — 2%) —
-3 (2ca:z (a+b) —z%(a— b)? — c2z2) =

=z - z) ((3x—z)(a—b)2+zc(2(a+b)—4c)) >0

So, from now we can assume that z >y > 2z and, therefore,
(a—b)(y—2)>(x—y)(b—c) <= aytbztcx2br+cy+az e
b—c<a—c<a——b ()

On the next step we will represent A (a,b,c) A (z,y,z) — 3A (az, by, cz) in
the form

y—z _T—2_ T—Y

u(y—z)2+v(z—x)2+w(az—y)2,

convenient for application of SOS Method, more precisely for it’s following
modification:

Let (z,y,2) and (u,v,w) be triples of real numbers such that 2 >y > z and
u>v>wov+w>0 (oru<v<wu+wv>0). Then

u(y—z)2+v(z—x)2+w(m—y)220,

which immediately follow from original form of SOS Theorem 2 "If z > y > 2
and numbers u, v, w satisfy to inequalities v +v > 0,v +w >0 and v > 0
then

u(y—z)2+v(z—w)2+w(x—y)2ZO”
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because u > v > w yield u+v >v+w >0 and 2v>2v4+w>0 = v>0.
To s1mphfy the procedure of transforming we denote P = be, @ = ca, R = ab,
A=a®>, B=b?,C=¢2 y PL=yz, Q1 = zz, Ry = zy, A = 22, By =32,

0y =7 and w1ll use Z instead cyclic sum .

We have

A(a,b,c) A (z,y,2) — 3A (az, by, cz) = Z (2bc — a2) . Z (2yz — 332) -

- 8Y (e — ) = (2P - Y 4) 2 B - YA
-3 (2 PR -y 44)) =

=1} PY Pi+Y A 4 -2 A P-2Y 4y Ae

65 PP +33 A4 =
=2} PY Ri+2) 43 4 -2 4,3 P-25 A p-
~6) PP +33 A4 +2Y PY P -3 AY 4, -
=23 (4-P)S (41 - P) +
+(3 40 - A a1) -2(Y 3PP - Y PYR) =
=23 (A-P)3 (41 - P) +
+) (241-Bi - C)A-2Y (2P, - Q- R, P.

Since
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(241-B1 —~C)A=3 (A= B) (41— B;) =Y (a® — t})(a? — ¢?) =

(@ =) (z+y)
=, . (z - y)?
and

> (2P—-Qi-R)P=

€T —

=Y (P Q) (P~ Q) = Y (be— co)(ys — z) = 3 L ‘y”) (z—y)?

then

A(a,b,c) A(z,y,2) — 3A (az, by, cz) = w(z — Y)? +u(y — 2)? + v (z — )

where
~= (a2 _b2) (x+y) 2cz (a—1b) _
w‘§2(a—b)2+ FEE o
=D+;:Z((a+b)(x+y)—2w)
”:%Z(c—aﬁﬂg_i)f*m)_2bz/z(i;a)_
=D+ == ((a+b)(z+y) - 2by)
_ 1 (* =) (y + 2) 2az (b — c)
u_§Z(b—C)2+ y—=z  y—z
=l # :Z((a+b)(x+y)—2ax)
and

D=3 (a—by
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Thus, to prove inequality A (a,b, c)A(z,y,2) = 3A (ax, by, cz) suffice to
prove that w > v >yandv+w>0usinga>b2>cr>y>2 and (4).
In order to obtain the inequality w > v > u we have to prove inequalities

D€ (b1c) (y+2) — 2az) < T2 ((c+a) (2 +2) —2by) <

z:Z((a+b)(m+y)—ZCz).

ec a-—c __a-—
= <

e -z Y
(b+c)(y+z)——2a:r§(c+a)(z+az)—2by§ (a+0b)(z+y) — 2cz.

We have

then remains to prove

Since

(c+a) (2 + @) — 2by — ((b+0) (y + 2) — 2az) =

=3(ax—by)+z(a—b)+c(:1:—y)20

and

(a+b)(x+y)—2cz—((c+a)(z+m)—2by):

:3(by—cz)+a(y—z)+x(b—c)20.

And finally we will prove inequality u +v > 0.
We have

b—c

u+v—(a—b)2=((b—c)2+ ((a+b)(a:+y)—2aa:)>+

y—z

+((a—c)2+i:i((aer)(x—i—y)—Qby)) =
= Z:Z((b—C)(y—Z)+(b+c)(y+z)—2ax)+
ij«a—c)(x—z>+<a+c>(w+z>—2by>=2—(”552<by+cz_ax>+
+2—(£:C—)(a:c+cz—by) =

r—z
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S (202(b_c+a_c)+2(a:v—by)(a_c— b—c)) >0
y—z x—2 T—2 Y—=z

Corollary. For any positive real numbers a, b, c,p and ¢ holds inequality

A (aP, b7, P) A (a2, b9, ¢7) > 3A (aP+9, P, P Ha)

Proof. By replacing in inequality (3) (a,b,c) and (z,y,2) with
(aP,bP,cP) and (a?,b9,c?), respectively,we obtain inequality

A (aP, 0, ) A (a9, b9, ¢7) > 3A (aPF9, BP9, PT9)

2.2. Remark.(related to inequality (2)). In supposition Ay > 0 and
using inequalities A% > 3Ao, A% > A9As3 and Ag > Ao Ay we obtain the
following chain of inequalities

ﬁ>,/ﬁ>{‘/g.
S 3% 3

Indeed, Ay >0 — A; > 0 and then
Al 230, <= ! > \/&.
3 3
At = ATAY S 3A2A§_ = A3 >30,A2 = Al>

>3A% = \/%2 f’/%.

Similarly, in supposition A, (a,b,c) > 0, using inequality (2) and Math
Induction can be proved chain of inequalities

Ay [Ag nfDn
sy f=2s...> 82
3 3 T 3

Also we have
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